This mosaic of four frames, photographed on September 26, 2000, was taken as the spacecraft looked down on the "saddle" region from the south.
The South Saddle

NEAR Shoemaker's current 62-mile (100-kilometer) orbit gives it a bird's-eye view of asteroid Eros. From this distance, only a handful of pictures are needed to create an image mosaic of a large area.

This mosaic of four frames, photographed on September 26, 2000, was taken as the spacecraft looked down on the "saddle" region from the south. The broad, curved depression that stretches vertically across the image is an area of the asteroid that was in shadow during the earlier 62-mile orbit, in April 2000. The area that appears speckled at the lower right is the same boulder-rich area featured as the April 4, 2000, Image-of-the-Day. The boulders are easily visible in the full-sized version of today's image.

(Mosaic of images 0145364037, 0145363975, 0145363913, 0145363851)

NEAR Mission

As the first launch in the National Aeronautics and Space Administration’s (NASA) Discovery Program, the Near Earth Asteroid Rendezvous (NEAR) mission is setting the stage for asteroidal exploration and forming a base of knowledge that will be the framework for future asteroid missions. The Johns Hopkins University Applied Physics Laboratory (JHU/APL) designed and built the NEAR Shoemaker spacecraft and manages the mission for NASA. The Mission Team is drawn internationally from universities, government agencies and private industry.

Launched February 17, 1996, NEAR Shoemaker began its orbital mission at asteroid 433 Eros on February 14, 2000. From May through August 2000, the spacecraft traveled in a circular orbit at a radius of 31 miles (50 kilometers) from the center of Eros. It was then boosted to a higher orbit to view Eros from the direction of the sun. In late December 2000, NEAR Shoemaker will descend to a 22-mile (35-kilometer) orbit and operate at that altitude or lower for the remainder of the mission. By February 2001, the NEAR mission will provide the first comprehensive data on the physical geology, composition and geophysics of an asteroid.

For more information visit the NEAR Web site: http://near.jhuapl.edu.